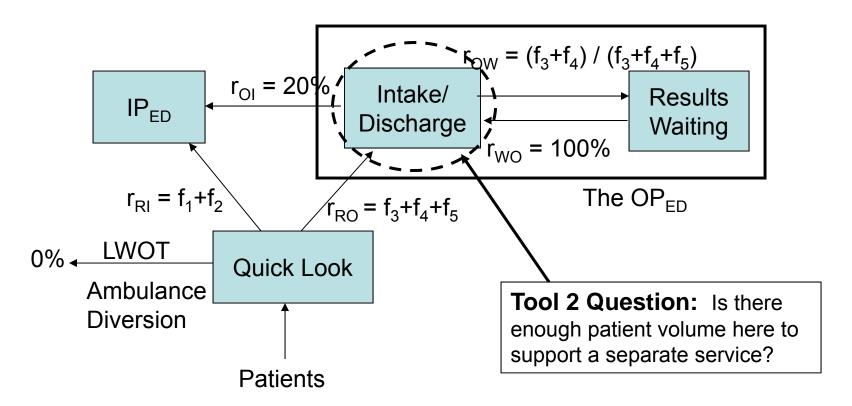
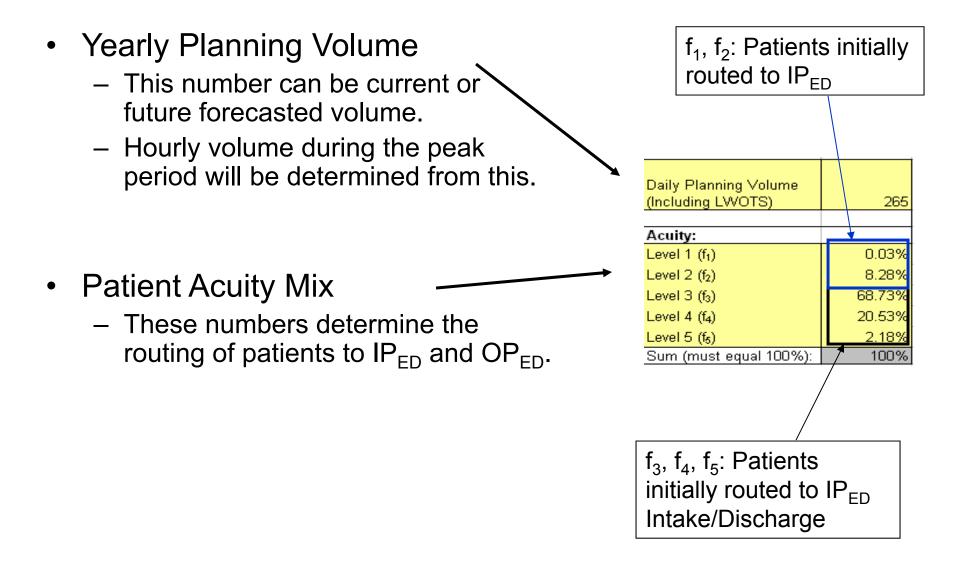

Minimum Volume Requirement Tool

Jeffery K. Cochran, PhD Kevin T. Roche, MS


Analysis Goals

- With this tool, the user will be able to answer the question: "Is my facility's volume sufficient to support a Split Flow process?"
- This decision is based on a forecasted planning volume, patient acuity mix (f₁, f₂, f₃, f₄, f₅), and assumed average service times.

The Central Concept – 'Two EDs in One'


- After a Quick Look registration, patients travel to either the IP_{ED} or the OP_{ED} side, depending upon acuity
 - In the IP_{ED}, all resources come to the patient in a bed according to traditional clinical practice.
 - In the OP_{ED}, the patient moves among treatment areas, rarely in front of a doctor, for example, not while awaiting test results or during hydration.
- Patient splitting is based on an ESI-like acuity scale where Level 1 and 2 patients go directly to the IP_{ED} and Level 3, 4, and 5 patients are initially routed to the OP_{ED}.
- Some Patients will be 'upgraded' from OP_{ED} to IP_{ED}.
- The next slide shows the OP_{ED} and IP_{ED} Split ED areas graphically.

Splitting Patient Flow

- Here r_{IJ} is the fraction of patients who flow from area I to area J. Recall that patient acuity mix is defined as $(f_1, f_2, f_3, f_4, f_5)$ and used for the initial split.
- Patients of acuity 5 visit only the OP_{ED} Intake/Discharge area. Patients of acuity 3 and 4 visit Results Waiting and Intake/Discharge (on the way in and out).
- From clinical experience, typically 20% of OP_{ED} patients are 'upgraded' to IP_{ED}.


Tool 2 Inputs

Adjusting for Daily Peaking^{[1][2]}

[1] and [2] are references confirming our time of day peaking study below.

• ED arrival volume patterns (not overall levels) are predictable by hour of the day. For example:

 Volume is stable during the 9 am-9 pm peak at a multiplier (compared to average daily volume) = 1.30

Calculating Tool 2 Output

- Hourly ED Arrivals:
 - The number of patients per hour arriving to the ED during the peak 12 hours

 $Hourly ED Arrivals = \frac{Daily Planning Volume}{24} * (9 am - 9 pm Peak Multiplier)$

- Arrivals/Hr to Intake/Discharge:
 - All lower acuity patients are either discharged after Intake or upgraded to be transferred to the IP_{ED} .

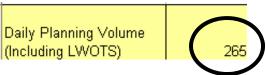
Arrivals / Hr to Intake / Discharg $e = Hourly ED Arrivals * [2*(f_3 + f_4 + f_5)]$

Lower acuity patients see a doctor in this area twice.

The EXCEL® Tool 2

Purpose: To determine v	vhether a fa	cility has suff	icient volume to sup	port a sepa	rate Intake	/Discharge	area	
INPUT:								
Daily Planning Volume								
(Including LWOTS)	265							
Acuity:								
Level 1 (f ₁)	0.03%							
Level 2 (f ₂)	8.28%			Volum				
Level 3 (f ₃)	68.73%			_ ≥ Min	?			
Level 4 (f ₄)	20.53%			2		y Split		
Level 5 (f ₅)	2.18%				Hourly	Peaking		
Sum (must equal 100%):	100%							
OUTPUT:								
Annual Planning Volume	96700							
Annual Flanning Volume	90700							
	Peak	Hourly	Arrivals/Hr to					
Time of Day	Multiplier	ED Arrivals	Intake/Discharge					
Peak Period (9am-9pm):	1.30	14.4	26.2	← In this cell, Green indicates that at least one Intake				
				provider is required (several may actually be required).				
				If the cell is Red, then volume is insufficient.				
NOTE: Assumed average	e length of s	tay in Intake	= 15 min., average	ength of sta	ay in Discha	arge = 7.5	min.	

Using Tool 2 Results


- An average hourly Intake/Discharge volume of > 4.05 patients will support a single doctor at 70% utilization during the peak hours which provides good door-to-doc times.
- If your results cell is green, at least one provider is required on the OP_{ED} side. Tool 5 will estimate how much space is required and Tool 6 how many providers.
- If the results cell is red, implementing split flow is more complicated. Although there is not enough business to keep the area fully busy, the principle of 'patients do not own a bed' can still be used and lower acuity patients may wait for results or be hydrated in waiting spaces rather than full service IP_{ED} beds. These ideas have been implemented by individual physicians and hospitals, but are not directly supported by this Toolkit.

Links to Next Tools

Re-enter, don't copy and paste,
 Patient Acuity Mix into 3 4 5
 – Needed to divide patient flow

- Re-enter, don't copy and paste,
 Daily Planning Volume into 5
 - Used to capacitate areas in the Split
 Flow model

Acuity:	
Level 1 (f ₁)	0.03%
Level 2 (f ₂)	8.28%
Level 3 (f ₃)	68.73%
Level 4 (f ₄)	20.53%
Level 5 (f ₅)	2.18%
Sum (must equal 100%):	100%

References

- [1] Green LV, Soares J, Giglio JF, Green RA. Using queueing theory to increase the effectiveness of emergency department provider staffing. *Academic Emergency Medicine* 2006;13:61-68.
- [2] HealthTech Briefing Report. Key trends in emergency and trauma services. *Health Technology Center* Oct 2006. <u>http://www.healthtechcenter.org/</u>.