Flow Calculation Tool

Split Flow Inpatient Transitional Care

Time Stamps

Target Utilization

Jeffery K. Cochran, PhD Kevin T. Roche, MS

Analysis Goals

- With this tool, the user will be able to answer the question: "How many patients per hour will arrive to each area of the Split ED?"
- The answer is based upon patient acuity mix (f₁, f₂, f₃, f₄, f₅) and volume, and the percentage of patients admitted to the inpatient units (f_A) from the ED.

Patient Flows in the Split ED

- Remember, in Tool 2, we 'push' patients into the front of the Split ED on the basis of acuity.
- Now in Tool 3, patients are 'pulled' out of the back-half to match the ED's admit percentage.
 - The 'Inpatient Transitional Care' area accommodates patients 'boarding' in the ED while waiting for inpatient bed placement.
 - For more information on the "whole-hospital" effect of ED admits, see [1] and [2]
- The next slide shows all Split ED areas combined graphically. In this Tool, all patients flows in the diagram will be calculated.

Combining Flows in the Split ED

Tool 3 Inputs

22%
265
0.000
0.03%
8.28%
68.73%
20.53%
2.18%
100%
20%

Tool 4 Outputs

Queuing Network Flow Balance Equations^{[3],[4]}

r_{OI} is same as used in 2 and f_A is the percentage of ED patients admitted to an inpatient unit.

$$Quick \ Look (QL) \ Arrivals = \begin{cases} Daily \ Planning \ Volume \ / \ 24 * 0.70 \end{cases}$$
Off-Peak period multiplier

Intake/Discharge Arrivals = Quick Look Arrivals *
$$2*(f_3 + f_4 + f_5)$$

Results Waiting Arrivals = QL Arrivals *
$$\left[\left(f_3 + f_4 + f_5 \right) + \left(\frac{f_3 + f_4}{f_3 + f_4 + f_5} \right) \right]$$

$$IP_{ED} Arrivals = QL Arrivals * [(f_1 + f_2) + f_{RE} * (f_3 + f_4 + f_5)]$$

Inpatient Transitional Care Arrivals = IP_{ED} Arrivals * $\frac{f_A}{f_{RE} * (f_3 + f_4 + f_5) + f_1 + f_2}$

 $HospitalExitArrivals = QLArrivals^{*}(1 - f_{RE})^{*}(f_{3} + f_{4} + f_{5}) + IP_{ED}Arrivals^{*}\left(1 - \frac{f_{A}}{f_{RE}^{*}(f_{3} + f_{4} + f_{5}) + f_{1} + f_{2}}\right)$

The EXCEL® Tool 3

Purpose: Calculate, using daily arrivals and urgency mix, the hourly patient flow to each split flow area										
INPUT:			3 Flow C	3 Flow Calculation		Split Flow dmit Hold				
Percent Admitted to IP				OH/LOT		ime Stamps				
Department from ED (f _A):	22%		5 Capac	5 Capacity Planning						
			Staffin	a Profile	.9					
Daily Planning Volume			6 Ottaining	grieme	Ir	nteger Effect				
(Including LWOTs):	233									
Acuity:										
Level 1 (f ₁)	0.03%									
Level 2 (f ₂)	8.28%	\rightarrow	From							
Level 3 (f ₃)	68.73%		2							
Level 4 (f ₄)	20.53%									
Level 5 (f ₅)	2.18%									
Sum (must equal 100%):	100%									
Default OP _{ED} to IP _{ED} transfer										
percentage (f _{RE}):	20%									
							USED			
OUTPUT:							IN			
Patient Arrivals per Hour	Quick Look	Intake/Discharge	Results Waiting	IP _{ED}	Inpatient T	ransitional Care	5			
Peak Period (9am - 9pm):	12.62	23.08	11.27	3.36		2.78				
Off-Peak Period (9pm - 9am):	6.80	12.43	6.07	1.81		1.50	6			
Overall Daily Average	9.71	17.75	8.67	2.58		2.14				

Note: Tool **6** is the staffing tool.

Using Tool 3 Output

- The tool's output shows, during peak and offpeak periods, the arrival rate to Split ED areas.
- The output is directly useful for staffing.
 - For example, if a doctor and team serve 2 patients per hour in the IP_{ED} , then:

$$IP_{ED} \text{ Doc Teams Needed} = \frac{IP_{ED} \text{ Arrival Rate/Hr}}{2 \text{ patients/Hr}}$$
$$IP_{ED} \text{ Doc Teams Needed} = \frac{2.58}{2} = 1.3 \approx 1 - 2 \text{ Doc teams needed}$$

 Tools 5 & 6 allocate space and providers, respectively, to the Split ED areas in more detail.

Links to Next Tools

- Hourly patient arrivals
 - Re-enter, *don't copy and paste*, into Tools 5& 6
 the numbers circled below where requested.

OUTPUT:					
Patient Arrivals per Hour	Quick Look	Intake/Discharge	Results Waiting	IP ed	Inpatient Transitional Care
Peak Period (9am - 9pm):	12.62	23.08	11.27	3.36	2.78
Off-Peak Period (9pm - 9am)	6.80	12.43	6.07	1.81	1.50
Average	9,71	17.75	8.67	2.58	2.14

References

[1] quantifies demand for inpatient resources by patients originating in the ED.

[2] provides more information on the effect of the ED on the whole hospital.

[3] defines flow balance theory in queuing networks.

[4] shows an example of its use to model an entire hospital's patient flow.

- [1] Cochran JK, Roche KT, (in revisions). A queuing-based decision support methodology to estimate hospital inpatient bed demand. *Journal of the Operational Research Society*.
- [2] Roche KT. A queuing and simulation-based approach to nonlinear hospital bed planning. MS Thesis, Ira A. Fulton School of Engineering, Arizona State University 2005.

[3] Gross D, Harris CM. *Fundamentals of Queueing Theory, 3rd edition.* New York: John Wiley and Sons Inc., Section 4.2: Open Jackson Networks 1998;174-183.

[4] Cochran JK, Bharti A. A multi- stage stochastic methodology for whole hospital bed planning under peak loading. *International Journal of Industrial and Systems Engineering* 2006;1(1):8-36.