
Capacity Planning Tool

Split Flow Inpatient Transitional Care

Time Stamps

Target Utilization

Integer Effect

Jeffery K. Cochran, PhD Kevin T. Roche, MS

Analysis Goals

- With this tool, the user will be able to answer the question: "How much space is required in each area of my split flow network?"
 - Space will defined as providers or physical patient capacity, depending upon the area.
- This decision is based on acuity split, area arrival rates, service times, and target performance measures.

Patient Safety Performance Measures

Estimated Using Queuing Theory ^{[1][2][3]}

- Server Utilization (p)
 - The average percent of time a resource is "busy".
 - Bed utilization is the average percent of time a bed is occupied by a patient.
 - Provider utilization is average percent of time spent in direct patient care.
- Wait in Queue (Wq)
 - The average length of time a patient will spend *waiting* for service in an area before starting service.
- Full/Busy Probability (p_c)
 - The fraction of arriving patients who must wait in an area until a resource becomes available. The table below defines resources by area.

Area	Resource Being Capacitated	Interpretation of Full/Busy Probability (p _c)				
Quick Look	Provider	The average fraction of time all providers are busy.				
Intake/Discharge	Provider	The average fraction of time all providers are busy				
Results Waiting	Space	The average fraction of time that all spaces are full.				
IP _{ED}	Space	The average fraction of time that all spaces are full.				
Inpatient Transitional Care	Space	The average fraction of time that all spaces are full.				

Tool 5 Calculations^{14]}

- Utilization (ρ): $\rho = \frac{\lambda * LOS}{c}$ Expected wait time in queue (Wq): $Wq = \left(\frac{(\lambda * LOS)^c}{c! \frac{c}{LOS}(1-\rho)^2}\right) p_0 * \left(\frac{C_s^2 + C_a^2}{2}\right)$

where:
$$p_0 = \left(\sum_{n=0}^{c-1} \frac{(\lambda * LOS)^n}{n!} + \frac{(\lambda * LOS)^c}{c!(1-\rho)}\right)^{-1}$$

Notation Key:

$$LOS = \{LOU, LOH, or LOT\}$$

 $c =$ number of area servers
 $\lambda =$ area arrival rate
 $Cs, Ca =$ Coefficient of
variation of the service and
arrival processes, respectively

Full/Busy probability (p_C): $p_c = \frac{\frac{(\lambda * LOS)^c}{c!}}{\sum_{i=1}^{c} \frac{(\lambda * LOS)^i}{i!}}$ Door-to-Doc (D2D) time: •

٠

$$D2D \ time = Wq_{QUICK \ LOOK} + LOS_{QUICK \ LOOK} + (f_1 + f_2) (travel_{QUICK \ LOOK \rightarrow IP_{ED}} + Wq_{IP_{ED}}) + (f_3 + f_4 + f_5) (travel_{QUICK \ LOOK \rightarrow INTAKE} + Wq_{INTAKE}) + Wq_{INTAKE})$$

Fraction of lower acuity patients Fraction of higher acuity patients

Tool 5 Input Data

 Arrivals per hour to each location in the Split ED – 3

INPUT	Quick Look	Intake/Discharge	Results Waiting	IP _{ED}	Inpatient Transitional Care
Arrivals/Hr:	12.62	23.08	11.27	3.36	2.78
I		1			1

- Mean LOS and coefficient of variation in each location:
 - Tool 4 provides inputs for Results Waiting, IP_{ED}, and Admit Hold
 - Defaults can be used in Registration and $\mbox{OP}_{\rm ED}$

	INPUTS					
	Number of	Average	Coefficient			
Area	Servers Required	Time (min.)	of Variation			
Quick Look	2	7.5	0.19			
Intake/Discharge	6	11.3	0.37			
Results Waiting	30	120.0	1.00			
IP _{ED}	20	238.0	0.71			
Inpatient Transitional Care	10	131.0	1.60			

 Travel times (new data): Quick Look to OP_{ED} and Quick Look to IP_{ED}

INPUT:			
Travel time from Quick Lo	5.0		
Travel time from Quick Lo	ok to IP _{ED} (min.) =	:	5.0

The EXCEL® Tool 5

Purpose: Estimate, usin	ng queuing theo	ry, patient-safe o	capacities in ea	ich split flow a	irea.		
INPUT	Quick Look	Intake/Discharge	Results Waiting	IP _{ED}	Inpatient Transitional Care	From	
Arrivals/Hr:	12.62	23.08	11.27	3.36	2.78	\int 3	
		INPUTS	INPUTS		OUTPUTS		
	Number of	Average	Coefficient	Avg. Server	Avg. Wait in	Full / Busy	
Area	Servers Required	Time (min.)	of Variation	Utilization (ρ)	Queue (Wq) (min)	Probability (p _C)	
Quick Look	2	7.5	0.19	78.9%	6.40	32.6%	
Intake/Discharge	6	11.3	0.37	72.1%	1.42	14.1%	
Results Waiting	30	120.0	1.00	75.1%	1.51	2.5%	
IP _{ED}	20	238.0	0.71	66.6%	1.67	2.2%	
Inpatient Transitional Care	10	131.0	1.60	60.7%	6.39	4.5%	
DOOR-TO-DOC TIMES:			From 4				
INPUT:							
Travel time from Quick Look	to OP _{ED} (min.) =		5.0		val tima innut		
Travel time from Quick Look to IP _{ED} (min.) =			5.0		vel time input		
					3 Flow Calculation	Split Flow Admit Hold	
OUTPUT:					LOU/LOH/LOT	Time Stamps	
Average Lower Acuity Door-			20.3	Minutes	5 Capacity Planning	Target Utilization	
Average Higher Acuity Door				Minutes	6 Staffing Profile	Integer Effect	
Overall Average Door-to-Doo	Time =		20.3	Minutes			

Iterating on the Number of Servers

- After input data is entered, you can allocate servers to each area
- More servers means better performance measures and better patient safety, but more expense
- Select scenarios that best balance capacity costs and patient safety
 - Utilization = 70% usually provides good balance and starting point
 - Utilization cell goes RED for $\rho \ge 100\%$ implying not enough servers

		INPUTS		OUTPUTS			
	Number of	Average	Coefficient	Aug. Server	Avg. Wait in	Full / Busy	
Area	Servere Required	Time (min.)	of Variation	Utilization (p)	Queue (Wq) (min)	Probability (p _c)	
Quick Look	2	7.5	0.19	78.9%	6.40	32.6%	
Intake/Discharge	6	11.3	0.37	72.1%	1.42	14.1%	
Results Waiting	30	120.0	1.00	75.1%	1.51	2.5%	
IP _{co}	20	238.0	0.71	66.6%	1.67	2.2%	
Inpatient Transitional Care	10	131.0	1.60	, 60.7%	6.39	4.5% ,	

Adjust these fields to achieve desirable performance measures

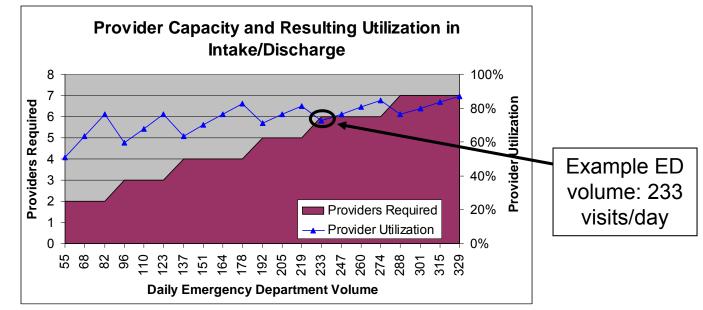
"One-up, One-down" Summary Table

- Once acceptable service levels are chosen, the 'one-up, one-down' table can be a useful summary of results for discussion.
- In each area, add one server and note results, then subtract one server and note results. The table includes all three:

		Average			Waiting Time	Full / Busy
Area	Volume/Hr	LOU (min.)	Number of Servers	Utilization	(min.)	Probability
Quick Look			1 server	>100%		
Quick Look	12.62	7.5	2 servers	78.9%	6.40	32.6%
Quick Look			3 servers	52.6%	0.73	14.6%
Intake/Discharge			5 docs, 15 rooms	86.9%	6.53	23.0%
Intake/Discharge	23.08	11.3	6 docs, 18 rooms	72.4%	1.42	14.3%
Intake/Discharge			7 docs, 21 rooms	62.1%	0.44	8.1%
Results Waiting			29 spaces	77.7%	2.55	3.4%
Results Waiting	11.27	120.0	30 spaces	75.1%	1.51	2.5%
Results Waiting			31 spaces	72.7%	0.89	1.8%
IP _{ED}			19 beds	74.0%	3.25	4.9%
IP _{ED}	3.36	238.0	20 beds	70.1%	1.67	3.3%
IP _{ED}			21 beds	66.6%	0.84	2.2%
Inpatient Transitional Care			9 beds	67.4%	16.44	7.8%
Inpatient Transitional Care	2.78	131.0	10 beds	60.7%	6.39	4.5%
Inpatient Transitional Care			11 beds	55.2%	2.50	2.4%
				MICI	rogulto	MICIOIO

M/G/c results

M/G/c/c results


The shaded numbers are used to estimate Average D2D time:

D2D time = 6.42 + 7.5 + (0.28% + 8.28%)(5 + 1.67)

+(68.73% + 20.53% + 2.18%)(5 + 1.42) = 20.3 minutes

Summary / Next Steps

We can look at capacity requirements over any range of volumes

- 3:1 Room:Provider ratio rule in Intake provides areas for patient staging, while, from a queuing perspective, a 2:1 ratio provides low room overflow probabilities.
- Now we can use Tool 6 to see how all areas should be staffed.

References

[1] contains the theory of estimating performance measures in a queue. [2] discusses its use in this Toolkit.

[3] uses queuing theory in a nine-node split ED.

[4] presents the Allen-Cunneen approximation for wait in queue calculations

- [1] Gross D, Harris CM. *Fundamentals of Queueing Theory, 3rd edition.* New York: John Wiley and Sons, Inc.; 1998.
- [2] Roche KT, Cochran JK. Improving patient safety by maximizing fast-track benefits in the emergency department A queuing network approach. *Proceedings of the 2007 Industrial Engineering Research Conference*, eds. Bayraksan G, Lin W, Son Y, Wysk R. 2007. pg. 619-624.
- [3] Cochran JK, Roche KT (submitted). A multi-class queuing network analysis methodology for improving hospital emergency department performance, *Computers and Operations Research* 2007.
- [4] Allen AO. *Probability, Statistics, and Queueing Theory with Computer Science Applications.* London: Academic Press, Inc.; 1978.